UPDATE: 2021-09-25 06:02:26
<- matrix(c(1,3,1,1,4,5,26,
D 1,2,1,3,1,3,22,
2,3,1,1,1,5,27,
1,2,2,1,1,5,34,
1,2,2,2,3,2,28,
3,4,1,1,3,5,20,
4,1,2,3,4,4,18,
4,4,1,2,4,4,30,
2,3,2,4,2,4,23,
1,2,2,1,4,1,32),
nrow = 10, ncol = 7, byrow = TRUE)
colnames(D) <- paste0("Q", 1:7)
rownames(D) <- paste0("ID", 1:10)
# 1.1のアンケートデータ
D
## Q1 Q2 Q3 Q4 Q5 Q6 Q7
## ID1 1 3 1 1 4 5 26
## ID2 1 2 1 3 1 3 22
## ID3 2 3 1 1 1 5 27
## ID4 1 2 2 1 1 5 34
## ID5 1 2 2 2 3 2 28
## ID6 3 4 1 1 3 5 20
## ID7 4 1 2 3 4 4 18
## ID8 4 4 1 2 4 4 30
## ID9 2 3 2 4 2 4 23
## ID10 1 2 2 1 4 1 32
<- D[7:10, 5:7]
D43 D43
## Q5 Q6 Q7
## ID7 4 4 18
## ID8 4 4 30
## ID9 2 4 23
## ID10 4 1 32
t(D43)
## ID7 ID8 ID9 ID10
## Q5 4 4 2 4
## Q6 4 4 4 1
## Q7 18 30 23 32
<- D[1:5, 1:5]
D55 D55
## Q1 Q2 Q3 Q4 Q5
## ID1 1 3 1 1 4
## ID2 1 2 1 3 1
## ID3 2 3 1 1 1
## ID4 1 2 2 1 1
## ID5 1 2 2 2 3
sum(diag(D55))
## [1] 8
\[ \boldsymbol{U} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \boldsymbol{V} = \begin{bmatrix} 1 & 2 & 0 & 2 & 4 \\ 0 & 0 & 2 & 3 & -6 \\ 0 & 0 & 5 & -7 & 1 \\ 0 & 0 & 0 & 7 & 5 \\ 0 & 0 & 0 & 0 & 3 \\ \end{bmatrix}, \boldsymbol{W} = \begin{bmatrix} -5 & 1 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}, \\ \boldsymbol{X} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, \boldsymbol{Y} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & -3 & 8 \\ 2 & 8 & 5 \end{bmatrix}, \boldsymbol{Z} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \\ \boldsymbol{A} = \begin{bmatrix} -4 & 0 & 0 & 0 \\ 5 & 8 & 0 & 0 \\ 0 & -9 & 3 & 0 \\ 11 & 0 & 6 & 1 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \boldsymbol{C} = \begin{bmatrix} 7 & -3 & 4 \\ 0 & 5 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \] ### 4.3.1 正方行列 \(\boldsymbol{U},\boldsymbol{V},\boldsymbol{X},\boldsymbol{Y},\boldsymbol{A},\boldsymbol{B}\)。
\(\boldsymbol{W},\boldsymbol{Z},\boldsymbol{C}\)。
\(\boldsymbol{U},\boldsymbol{B}\)。
\(\boldsymbol{U}\)。
\(\boldsymbol{U},\boldsymbol{X},\boldsymbol{Y},\boldsymbol{B}\)。
\(\boldsymbol{Z}\)。
\(\boldsymbol{U},\boldsymbol{V},\boldsymbol{B}\)。
\(\boldsymbol{U},\boldsymbol{A},\boldsymbol{B}\)。
\[ \boldsymbol{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}, \boldsymbol{c} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \boldsymbol{d} = \begin{bmatrix} -3 \\ 2 \\ 0 \end{bmatrix}, \boldsymbol{f} = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}, \\ \boldsymbol{P} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ \end{bmatrix}, \boldsymbol{Q} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ \end{bmatrix}, \boldsymbol{R} = \begin{bmatrix} 1 & 2 & 2\\ 2 & 4 & -1 \end{bmatrix}, \\ \boldsymbol{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \boldsymbol{T} = \begin{bmatrix} -2 & 0 \\ 1 & 2 \\ 4 & -3 \end{bmatrix} \]
<- matrix(
a c(3,
4),
nrow = 2, ncol = 1, byrow = TRUE)
<- matrix(
b c(-1,
5),
nrow = 2, ncol = 1, byrow = TRUE)
<- matrix(
c c(-3,
2),
nrow = 2, ncol = 1, byrow = TRUE)
<- matrix(
d c(-3,
2,
0),
nrow = 3, ncol = 1, byrow = TRUE)
<- matrix(
f c(3,
5,
-1),
nrow = 3, ncol = 1, byrow = TRUE)
<- matrix(
P c(2, 1,
-1, 2),
nrow = 2, ncol = 2, byrow = TRUE)
<- matrix(
Q c(1, 2,
2, 4),
nrow = 2, ncol = 2, byrow = TRUE)
<- matrix(
R c(1, 2, 2,
2, 4, -1),
nrow = 2, ncol = 3, byrow = TRUE)
<- matrix(
S c(1, 0, 0,
0, 0, 0,
0, 0, 1),
nrow = 3, ncol = 3, byrow = TRUE)
<- matrix(
T c(-2, 0,
1, 2,
4, -3),
nrow = 3, ncol = 2, byrow = TRUE)
-3 * R
## [,1] [,2] [,3]
## [1,] -3 -6 -6
## [2,] -6 -12 3
+ P Q
## [,1] [,2]
## [1,] 3 3
## [2,] 1 6
t(R)
## [,1] [,2]
## [1,] 1 2
## [2,] 2 4
## [3,] 2 -1
# 定義されない
- t(T) R
## [,1] [,2] [,3]
## [1,] 3 1 -2
## [2,] 2 2 2
5*R - 5*t(T)
## [,1] [,2] [,3]
## [1,] 15 5 -10
## [2,] 10 10 10
%*% P Q
## [,1] [,2]
## [1,] 0 5
## [2,] 0 10
as.vector(2 * t(a) %*% b) * (Q + P)
## [,1] [,2]
## [1,] 102 102
## [2,] 34 204
%*% f S
## [,1]
## [1,] 3
## [2,] 0
## [3,] -1
t(c) %*% R
## [,1] [,2] [,3]
## [1,] 1 2 -8
# 定義されない
%*% Q P
## [,1] [,2]
## [1,] 4 8
## [2,] 3 6
%*% T R
## [,1] [,2]
## [1,] 8 -2
## [2,] -4 11
# 定義されない
%*% T S
## [,1] [,2]
## [1,] -2 0
## [2,] 0 0
## [3,] 4 -3
+ Q) %*% a (P
## [,1]
## [1,] 21
## [2,] 27
%*% (d + f) S
## [,1]
## [1,] 0
## [2,] 0
## [3,] -1
t(f) %*% d + t(c) %*% a
## [,1]
## [1,] 0
\[ \boldsymbol{T} = \begin{bmatrix} -2 & 0 \\ 1 & 2 \\ 4 & -3 \end{bmatrix} \]
<- T[,1]
t1 <- T[,2]
t2
# ベクトルの長さの2乗
t(t1) %*% t1
## [,1]
## [1,] 21
# ベクトルの長さの2乗
t(t2) %*% t2
## [,1]
## [1,] 13
# 内積
t(t1) %*% t2
## [,1]
## [1,] -10
t(T) %*% T
## [,1] [,2]
## [1,] 21 -10
## [2,] -10 13
<- t(T) %*% T
TT
# 要素が一致する
1,1] == (t(t1) %*% t1) TT[
## [,1]
## [1,] TRUE
2,2] == (t(t2) %*% t2) TT[
## [,1]
## [1,] TRUE
1,2] == (t(t1) %*% t2) TT[
## [,1]
## [1,] TRUE
2,1] == (t(t1) %*% t2) TT[
## [,1]
## [1,] TRUE
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] ja_JP.UTF-8/ja_JP.UTF-8/ja_JP.UTF-8/C/ja_JP.UTF-8/ja_JP.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.3 magrittr_2.0.1 ragg_1.1.3 tools_4.0.3
## [5] htmltools_0.5.1.1 yaml_2.2.1 stringi_1.5.3 rmarkdown_2.6
## [9] knitr_1.33 stringr_1.4.0 xfun_0.24 digest_0.6.27
## [13] textshaping_0.3.5 systemfonts_1.0.2 rlang_0.4.10 evaluate_0.14